There's a fine line between a numerator and a denominator

Paul Hewson paul.hewson@plymouth.ac.uk

1st March 2016

Paul Hewson paul.hewson@plymouth.ac.uk There's a fine line between a numerator and a denominator

A D > A B > A B > A B >

Table of contents

1 Stroboscopic Introduction

2 Lexis Diagrams

3 Small area estimation techniques

Paul Hewson paul.hewson@plymouth.ac.uk There's a fine line between a numerator and a denominator

A D > A B > A B > A B >

Numerators and Denominators

$$\mathsf{Risk} = \frac{\mathsf{Injury \ Count}}{\mathsf{Exposed \ Population}}$$

 $\mathsf{Rate} = \frac{\mathsf{Injury} \; \mathsf{Count}}{\mathsf{Amount} \; \mathsf{of} \; \mathsf{exposure}}$

Counts

(日) (四) (日) (日) (日)

Something we can all agree on

All severity injuries 2014 / 2014 Population estimates

Why the middle aged bulge?

Why the middle aged bulge?

Exploring Population Risk (all casualties): Lexis Diagram

うへつ

Fitting models

A D > A D > A D > A D >

Fitting Age-Period-Cohort models

- Casualty Count = y
- Age of casualty = a
- Cohort (deduced birth year of casualty) = c
- Period (year this happened) = p

Assume that the casualty count can be modelled as a realisation of a Poisson random variable

$$Y_{apc} \sim Poisson(Denominator imes \lambda_{apc})$$

Now assume that we can model the logarithm of this model parameter:

$$\log(\lambda_{apc}) = \text{Slope}_a + \text{Slope}_p + s(a) + s(p) + s(c) + \epsilon$$

(Check, if I fit model 1985-2013 do I make a good job predicting 2014?) What do s(a) and s(c) look like?

Age: as expected

A D > A B > A B > A B >

э.

Cohort

臣

・ロ・・ (日・・ (日・・ (日・)

Adjusting for demographics

Adjusting to demographics

Don't have time today but ...

- Have made more subtle adjustments (age / gender / urban)
- Have used spatial smoothing
- This smooths a lot of trends over time (especially if you use age / gender / mode)
- Very powerful forecasting method

イロン イボン イヨン イヨン

Motorbike Lexis Diagrams

A D > A B > A B > A B >

Turning risk into rate

- Either asume everyone at every age has equal exposure
- Or
- Find a better denominator. For roads we use AADT without thinking about it.

・ロット (雪) () () () ()

э.

Information on useage by demography

- Census/DWP/Other (e.g. GP registrations): Age/Gender
- Census: travel to work, car ownership and other obviously useful things
- Census: occupational status, limiting long term illness, marital status and other less obviously useful things
- Other: driving licences, vehicles, economic activity, rainfall, twitter activity, flatness, aggregated GPS logs
- NTS: for a carefully managed random sample:number of trips taken by motorbike in a week, the average annual mileage
- Other surveys e.g. APS cycling activity (not necessarily on road)

How to combine this information to be

- Useful
- Not overstate the accuracy of the combining process

Zero Inflated Poisson Model

- Assume there are two kinds of people Z = 1 if they ride a motorcycle and Z = 0 if they don't.
- Model *Z* ~ *Bernoulli*(*p*)
- Model Y|Z = 1 as $Poisson(\lambda)$

For example, according to NTS

- Baseline P(Z = 1) = 0.0001011964
- Adjust this:

ly

イロト イポト イヨト イヨト

Combining with administrative data

- Either: Standard raking buys you a lot of detail e.g. Travel to work by Motorbike only released at LA level, small area micro-data suggests how to achieve age/gender breakdown. Can look at lower level geography (motorbikes grouped with "other") and combine to match local known totals and local authority totals.
- Or: Combine model parameters with census data to create simulations of Britain; multilevel models that account for urban/flat/rainy nature of higher level geography
- Or: Both
- Methods tested by predicting known quantities and checking.

化口水 化晶体 化压水 化压水

Widely accepted methodology: Obesity

(Also, our Skills for Life 2011 small area estimated highlighted by ONS: Beyond 2011: Producing Socio-demographic Statistics)

Paul Hewson paul.hewson@plymouth.ac.uk There's a fine line between a numerator and a denominator

This is not perfect knowledge

- We can't "crack" the truth out of disclosure controlled administrative data.
- But given various released sources the range of possibilities can be numerically limited, and this can provide enough information to be useful.
- Run several simulations in order to account for lack of certain knowledge

A (1) A (1) A (1) A

Adjusting for estimated PTW usage

After adjust	ment rates got:
Bigger	Smaller
W0600002	3 W0600004
E06000017	E06000044
E06000046	E09000020
W0600000	E0600008
E10000013	E0900033
E10000027	E0900001

A D > A B > A B > A B >

э.

Summary

- Even simple denominators such as population counts can be powerfully informative (if you think about the counterfactuals)
- What can you assume about exposure by age/gender/over time?
- Lots of publicly available datasets provide at worst interesting proxy variables and at best a route into estimating relative exposure
- I'm very very very keen to develop this work further in the real world if anyone is good at project managing from a distance

Paul Hewson www.plymouth.ac.uk/staff/phewson paul.hewson@plymouth.ac.uk

化口水 化固水 化压水 化压水

ъ