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Cities

1950: 746 million people lived in cities1

2014: 3.9 billion people lived in cities
2050: Over 2 in 3 people will live in cities(estimated)

This matters to (a) cities and (b) the whole world.

70 cities are bigger than Wales, 38 bigger than Scotland.
37 are bigger (but not better) than Yorkshire.

It’s cities, not administrative entities that have to compete globally

1Source: UN (2014) World Urbanization Prospects UN DESA Population Division
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Optimising Cities
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The “Price of Anarchy”

This specific phenomena does exist 2. Is it very common?
We 3 individually pick the best route for ourselves.
Our individual choice may make a city more congested than if we co-operated
with a benevolent routing dictator
This is just one example of how traffic on road networks behaves in very
non-intuitive ways

2e.g., Cheonggyecheon, South Korea and 42nd Street, New York 1990
3according to economic theory
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Speed and flow models
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Speed flow relationships

Flow models: traditional, well
validated (Census, Loops and
Counts etc., Mobile Phone)
Speed models: machine learning +
various (GPS tracker vehicles)
Allows us:

Assess performance of road
Assess “stress”
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Speed and flow and road injury

Compute collisions / flow for most
roads in a City per time period
Fit point process models to
investigate the effect of actual
speed
Look for gross anomalies . . .and
assess the strength of evidence to
claim them as such
Generalise / predict elsewhere

The more we condition on geographic and sociodemographic factors the more we
can generalise the model. Generalisable models that make out of area predictions
are testable 9 / 16



Background Road Injury Risk Predictive Modelling

Geographic and demographic

4d plot collisions / predictors Hilliness level
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Implications
Average cyclist: 30 minutes A measure of “porosity”

www.cityscience.com/blog/analytics-for-healthy-streets-part-1
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Junctions 1: crash profile

Not an exact science (but what is?)
For each crash, assess type1

We also assign a reliability score
Build predictive models for junction
profiles on reliability weighted
crash data

1e.g. M. Stone, J. Broughton (2003) “Getting off your bike: Cycling accidents in Great
Britain in 1990-1999” Accident Analysis & Prevention 35:549-56
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Junctions 2: flow profiles

Junction profiles are complex
How many people are making opposed right
turns?
How much opposing traffic exists?
What are the demographics of the road
users

We can estimate association between injury
riska and junction profiles
Are some “routes” higher risk than others?

aHave to use probabilistic models
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Data Fusion

Insight Traffic

Planners

Counters

GPS

Demo
graphic

Modern

Mobile

Bluetooth

Image

Twitter

Crash

STATs19

HES

Fatal Self

Z. Zhang, Q. He Q, J. Gao and M. Ni (2018) “A deep learning approach for detecting traffic
accidents from social media data” Transportation Research Part C: Emerging
Technologies. 86:580-96 14 / 16
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Data Fusion

Data = (1, 3, 2, 4, 5).
Arithmetic mean = 1

5(1+ 3+ 2+ 4+ 5) = 3

Or arithmetic mean = ( 151+
1
53+ 1

52+ 1
54+ 1

55) = 3
Why not use ( 1

201+
2
203+ 4

202+ 5
204+ 8

205) = 3.75
(Almost) a.k.a. Exponentially Weighted Moving Average, used routinely!4

Or instead of recency, give more weight to data you trust more
(this idea is as old as Gauss)
Or give weight to data that is more important
Sometimes data cannot be compared directly, but we can imagine that it is
correlated with a “latent” variable (psychologists do this all the time)

4R. Brown (1963) Smoothing Forecasting and Prediction of Discrete Time Series Englewood Cliffs,
NJ: Prentice-Hall
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Conclusion

A lot of data exists already but are not used
Why don’t more UK cities have detailed crash rate maps?
Pollution = f(Flow/Speed); ∴ we already have pollution models!
(and we have pretty maps of them!)
Is there an unwillingness to use statistical models to do the fusion?

No data are perfect
Statistical models let you carry uncertainty from one dataset to another

Doing data fusion is very powerful - don’t necessarily need super-trendy
datasets to add value!
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